CLOSE AD ×

Thorsten Helbig on Engineering Cutting-Edge Facades

Thorsten Helbig on Engineering Cutting-Edge Facades

As an engineer, Thorsten Helbig, co-founder of Knippers Helbig Advanced Engineering, has a unique perspective on facade design. “We conceptualize a facade as an integral part of a whole, as part of a larger system,” he explained. Helbig, who will deliver the morning keynote address at next month’s Facades+ NYC conference, identified two focal points. The first is the relationship of the building envelope to structure. The second is performance: “What can the facade offer back to the building?” Helbig asked

Helbig queries all of his facade design choices. “Can we use the facade to capture energy for the building? What are the operation modes—is there a potential the facade could be flexible or adaptive to actively support the building functions?” In both cases, Knippers Helbig is invested in moving beyond yesterday’s solutions. “Our engineering approach is fundamentally driven by our interest in innovation,” said Helbig.

Two areas in which Knippers Helbig is leading the innovation charge are design technology and materials. The firm began developing tessellation tools for grid shells about two decades ago, well before similar software was commercially available. In the years since, the engineers have refined their in-house technology into a multi-criteria optimization tool, which proved critical to the Shenzhen airport project. “Our work on the Shenzhen airport profoundly shaped our approach to design technology—as it relates to our basic understanding of the design process (or you might say process design)—and as it relates to a potential paradigm shift in project organization as a whole: away from the traditional hierarchical-linear design process toward a design of the process in which all design parameters are simultaneously considered,” explained Helbig.

As for materials, the firm is known for its facility with both conventional and “new” systems. Knippers Helbig capitalized on the flexible strength of glass fibre reinforced polymers (GFRP) first for an operable facade in a typhoon zone for South Korea’s Expo 2012 pavilion, then for a proposed shading concept for Renzo Piano‘s Academy Museum of Motion Pictures in Los Angeles. “However,” added Helbig, “even more traditional building materials such as timber can be re-interpreted through an application of the latest design and fabrication technologies.” Two cases in point are a double curved multi-layer grid shell in Cologne and a parametrically developed timber grid shading screen for a Dubai high-rise.

Knippers Helbig is also known for its sensitivity to environmental performance. Helbig points out that 75 percent of New York City‘s greenhouse gas emissions can be attributed to the building sector. “As long as we are not able to generate the required energy emission-free and based fully on renewable resources, the reduction of the operational energy will remain a key factor in designing sustainable buildings,” he said. Embedded energy is also a concern, leading the engineers to explore materials that are based on renewable resources and/or compostable at end of life. Knippers Helbig recently collaborated on the EpiCenter Expansion for Artists for Humanity (with Behnisch Architekten and Transsolar), poised to become Boston’s first LEED Platinum building and the first Energy Plus house in New England. “The facade system will be developed to have the capacity to supply energy back to the building, ultimately producing a building system that generates more energy than it consumes,” Helbig explained.

To hear more from Helbig and other movers and shakers in the world of facade design and construction, register today for Facades+ NYC. Visit the conference website for more information and a full schedule.

CLOSE AD ×